organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

r-2,c-6-Bis(4-chlorophenyl)-c-3,t-3dimethylpiperidin-4-one

S. S. Ilango,^a S. Ponnuswamy,^a P. Gayathri,^b A. Thiruvalluvar^{b*} and R. I. Butcher^c

^aDepartment of Chemistry, Government Arts College (Autonomous), Coimbatore 641 018, Tamilnadu, India, ^bPG Research Department of Physics, Raiah Serfoii Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, and ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: athiru@vsnl net

Received 28 October 2008: accepted 6 November 2008

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.083; data-to-parameter ratio = 26.9.

In the title molecule, C₁₉H₁₉Cl₂NO, the piperidine ring adopts a chair conformation and the dihedral angle between the two benzene rings is $77.23 (7)^{\circ}$. In the crystal structure, molecules are linked by $N-H \cdots O$ and $C-H \cdots O$ hydrogen bonds, and a weak $C-H \cdots \pi$ interaction is also observed.

Related literature

For a related crystal structure, see: Gayathri et al. (2008). For background on the biological activities of piperidones, see: Dimmock et al. (2001); Perumal et al. (2001). For the synthesis and stereodynamics of piperidin-4-ones and their derivatives, see: Ponnuswamy et al. (2002). For the synthesis, see: Noller & Baliah (1948).

Experimental

Crystal data C19H19Cl2NO $M_r = 348.25$ Orthorhombic, Pna21 a = 13.1627 (5) Åb = 22.4739 (7) Å c = 5.8794 (2) Å

$V = 1739.23 (10) \text{ Å}^3$
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.38 \text{ mm}^{-1}$
T = 200 (2) K
$0.44 \times 0.31 \times 0.22 \text{ mm}$

Data collection

5694 reflections

212 parameters 1 restraint

Oxford Diffraction Gemini R diffractometer Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2008)	$T_{\min} = 0.950, T_{\max} = 1.000$ (expected range = 0.874–0.920) 19147 measured reflections 5694 independent reflections 2460 reflections with $I > 2\sigma(I)$ $R_{int} = 0.051$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.083$ S = 0.82	H atoms treated by a mixture of independent and constrained refinement

refinement $\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.31$ e Å⁻³ Absolute structure: Flack (1983), 2278 Friedel pairs

Flack parameter: -0.03(5)

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O4 ⁱ C23-H23···O4 ⁱⁱ C31-H31 B ··· $Cg1^{iii}$	0.853 (17) 0.95 0.98	2.312 (17) 2.56 2.96	3.092 (2) 3.377 (2) 3.7265 (15)	152.3 (15) 144 136
Summatry and any (i) y	1	x 1 x 1 m	$1.(33) \times 1$	1 + 1 = Calie

Symmetry codes: (i) x $+\frac{1}{2}$, z; (ii) $x - \frac{1}{2}$, $-y + \frac{1}{2}$, z - 1; (iii) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, z. Cg1 is the centroid of the C61-C66 ring.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

AT thanks the UGC, India, for the award of a Minor Research Project [File No. MRP-2355/06(UGC-SERO), Link No. 2355, 10/01/2007]. RJB acknowledges the NSF-MRI program for funding the purchase of the X-ray CCD diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2832).

References

Dimmock, J. R., Padmanilayam, M. P., Puthucode, R. N., Nazarali, A. J., Motaganahalli, N. L., Zello, G. A., Quail, J. W., Oloo, E. O., Kraatz, H. B., Prisciak, J. S., Allen, T. M., Santos, C. L., Balsarini, J., Clercq, E. D. & Manavathu, E. K. (2001). J. Med. Chem. 44, 586-593.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Gayathri, P., Thiruvalluvar, A., Manimekalai, A., Sivakumar, S. & Butcher, R. J. (2008). Acta Cryst. E64, o1973.
- Noller, C. & Baliah, V. (1948). J. Am. Chem. Soc. 70, 3853-3855.
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Perumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156-159.

Ponnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect B, 41, 614-627.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2008). E64, o2312 [doi:10.1107/S1600536808036325]

r-2,c-6-Bis(4-chlorophenyl)-c-3,t-3-dimethylpiperidin-4-one

S. S. Ilango, S. Ponnuswamy, P. Gayathri, A. Thiruvalluvar and R. J. Butcher

Comment

Piperidones are an important group of heterocyclic compounds in the field of medicinal chemistry due to their biological activities, including cytotoxic and anticancer properties (Dimmock *et al.*, 2001). Piperidones were also reported to possess analgesic, anti-inflammatory, central nervous system (*CNS*), local anaesthetic, anticancer and antimicrobial activity (Perumal *et al.*, 2001). The design and synthesis of conformationally anchored molecules is an important approach towards improving potency and selectivity. One such class of compounds constitutes piperidin-4-ones and their derivatives, whose synthesis and stereodynamics are well investigated (Ponnuswamy *et al.*, 2002). The crystal structure of r-2,c-6-Bis(4-chlorophenyl)-t-3-isopropyl-1-nitrosopiperidin-4-one has been reported, wherein the piperidine ring adopts a chair conformation (Gayathri *et al.*, 2008).

In the title molecule, $C_{19}H_{19}Cl_2NO$ (Fig. 1), the piperidine ring adopts a chair conformation. The phenyl rings at position 2,6 and one of the methyl groups attached to the piperidine ring in 3, have equatorial orientations. The dihedral angle between the two phenyl rings is 77.23 (7)°. In the crystal, the molecules are linked by N1—H1···O4 (x - 1/2, 1/2 - y, z) and C23—H23···O4(x - 1/2, -y + 1/2, z - 1) hydrogen bonds (Table 1). Further, a C31—H31B··· π interaction involving the phenyl ring (C61—C66) at position 6 also present in the crystal structure.

Experimental

The procedure adopted for the preparation of the title heterocyclic compound is similar to that of Noller & Baliah (1948). Ammonium acetate (7.7 g, 0.1 mol), 4-chlorobenzaldehyde (28.1 g, 0.2 mol) and 3-methyl-2-butanone (10.7 ml, 0.1 mol) were dissolved in 70 ml of rectified spirit. The resulting solution was heated to boiling and set aside for a day. The oily base obtained was converted into its hydrochloride by the addition of concentrated hydrochloric acid and the separated solid was filtered. Then the hydrochloride was neutralized with liquid ammonia. The resulting solid was filtered and purified by recrystallization from ethanol to yield colourless plates of (I). The yield of the product obtained was 28.65 g (82%).

Refinement

Atom H1 attached to N1 was located in a difference fourier map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95, 0.98, 0.99 and 1.00 Å for Csp^2 , methyl, methylene and methine C, respectively; $U_{iso}(H) = kU_{eq}(C)$, where k = 1.5 for methyl and 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2. The packing of (I), viewed down the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

r-2,c-6-Bis(4-chlorophenyl)-c-3,t-3-dimethylpiperidin-4-one

Crystal	data
---------	------

C ₁₉ H ₁₉ Cl ₂ NO	$D_{\rm x} = 1.330 {\rm ~Mg~m^{-3}}$
$M_r = 348.25$	Melting point: 402(1) K
Orthorhombic, <i>Pna</i> 2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2c -2n	Cell parameters from 4389 reflections
a = 13.1627 (5) Å	$\theta = 4.5 - 32.5^{\circ}$
b = 22.4739 (7) Å	$\mu = 0.38 \text{ mm}^{-1}$
c = 5.8794 (2) Å	T = 200 (2) K
$V = 1739.23 (10) \text{ Å}^3$	Rectangular-plate, colourless
Z = 4	$0.44 \times 0.31 \times 0.22 \text{ mm}$
$F_{000} = 728$	

Data collection

Oxford Diffraction R Gemini diffractometer	5694 independent reflections
Radiation source: fine-focus sealed tube	2460 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.052$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{max} = 32.5^{\circ}$
T = 200(2) K	$\theta_{\min} = 4.7^{\circ}$
ϕ and ω scans	$h = -18 \rightarrow 19$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008)	$k = -33 \rightarrow 33$

$T_{\min} = 0.950, T_{\max} = 1.000$	
19147 measured reflections	

 $l = -8 \rightarrow 8$

Refinement

Refinement on F^2	Hydrogen site location: difmap and geom
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.039$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0371P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.083$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 0.82	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
5694 reflections	$\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$
212 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 2278 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.03 (5)

Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.03898 (4)	0.45263 (2)	0.55799 (11)	0.0585 (2)
C12	0.10182 (5)	-0.04812 (2)	1.04537 (12)	0.0655 (2)
O4	0.57022 (11)	0.24936 (6)	1.2121 (2)	0.0424 (5)
N1	0.28387 (13)	0.22418 (6)	1.0183 (3)	0.0312 (5)
C2	0.32122 (13)	0.28540 (7)	1.0528 (3)	0.0277 (5)
C3	0.43587 (14)	0.28927 (8)	0.9833 (3)	0.0307 (6)
C4	0.49124 (15)	0.23934 (9)	1.1093 (3)	0.0341 (6)
C5	0.44531 (14)	0.17905 (9)	1.1022 (4)	0.0411 (7)
C6	0.33289 (15)	0.18081 (8)	1.1659 (3)	0.0321 (6)
C21	0.25298 (15)	0.32842 (8)	0.9275 (3)	0.0312 (6)
C22	0.21068 (13)	0.31249 (8)	0.7180 (3)	0.0314 (6)
C23	0.14602 (14)	0.35069 (8)	0.6055 (3)	0.0345 (6)
C24	0.12245 (15)	0.40493 (8)	0.7019 (3)	0.0352 (6)
C25	0.16202 (16)	0.42206 (8)	0.9082 (3)	0.0377 (7)
C26	0.22727 (14)	0.38327 (8)	1.0207 (3)	0.0347 (6)

C31	0.47926 (14)	0.34992 (8)	1.0480 (4)	0.0439 (7)
C32	0.45062 (15)	0.27850 (10)	0.7274 (3)	0.0426 (7)
C61	0.27905 (14)	0.12205 (8)	1.1398 (3)	0.0305 (6)
C62	0.28440 (17)	0.08976 (9)	0.9400 (3)	0.0439 (7)
C63	0.23098 (19)	0.03820 (9)	0.9104 (4)	0.0504 (8)
C64	0.17155 (15)	0.01751 (8)	1.0837 (4)	0.0424 (7)
C65	0.16451 (18)	0.04755 (10)	1.2868 (4)	0.0461 (8)
C66	0.21822 (16)	0.09989 (10)	1.3129 (3)	0.0432 (8)
H1	0.2194 (13)	0.2237 (7)	1.032 (3)	0.023 (5)*
H2	0.31631	0.29460	1.21887	0.0333*
H5A	0.48191	0.15262	1.20910	0.0493*
H5B	0.45276	0.16236	0.94724	0.0493*
Н6	0.32639	0.19436	1.32722	0.0385*
H22	0.22667	0.27498	0.65262	0.0376*
H23	0.11790	0.33976	0.46270	0.0414*
H25	0.14517	0.45957	0.97251	0.0452*
H26	0.25477	0.39444	1.16384	0.0416*
H31A	0.44241	0.38120	0.96623	0.0659*
H31B	0.55139	0.35148	1.00700	0.0659*
H31C	0.47187	0.35603	1.21217	0.0659*
H32A	0.41564	0.30973	0.64133	0.0639*
H32B	0.42235	0.23962	0.68637	0.0639*
H32C	0.52328	0.27930	0.69113	0.0639*
H62	0.32636	0.10380	0.81998	0.0527*
Н63	0.23513	0.01699	0.77096	0.0605*
H65	0.12350	0.03259	1.40682	0.0553*
H66	0.21343	0.12114	1.45215	0.0519*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0547 (3)	0.0505 (3)	0.0703 (4)	0.0179 (3)	-0.0132 (4)	0.0120 (3)
Cl2	0.0681 (4)	0.0421 (3)	0.0864 (4)	-0.0195 (3)	-0.0183 (4)	0.0074 (3)
04	0.0273 (8)	0.0530 (9)	0.0468 (8)	-0.0024 (7)	-0.0046 (8)	0.0054 (7)
N1	0.0184 (9)	0.0324 (8)	0.0427 (10)	0.0015 (7)	-0.0010 (8)	0.0036 (7)
C2	0.0273 (10)	0.0267 (9)	0.0292 (9)	0.0009 (8)	0.0047 (10)	0.0017 (10)
C3	0.0262 (11)	0.0338 (10)	0.0321 (10)	-0.0012 (9)	0.0015 (9)	0.0010 (8)
C4	0.0225 (10)	0.0414 (12)	0.0385 (11)	0.0026 (9)	0.0030 (10)	-0.0003 (9)
C5	0.0293 (11)	0.0359 (11)	0.0581 (14)	0.0052 (9)	-0.0109 (11)	0.0094 (11)
C6	0.0329 (11)	0.0306 (10)	0.0328 (9)	0.0049 (9)	-0.0053 (9)	0.0087 (8)
C21	0.0223 (10)	0.0374 (12)	0.0339 (10)	-0.0015 (9)	0.0035 (9)	-0.0045 (9)
C22	0.0337 (11)	0.0273 (10)	0.0331 (10)	-0.0018 (9)	-0.0029 (10)	-0.0017 (8)
C23	0.0307 (11)	0.0362 (10)	0.0366 (11)	0.0023 (9)	-0.0043 (9)	0.0008 (9)
C24	0.0306 (11)	0.0327 (11)	0.0424 (11)	0.0012 (9)	-0.0018 (10)	0.0117 (10)
C25	0.0354 (12)	0.0304 (11)	0.0472 (11)	0.0037 (10)	0.0028 (11)	-0.0011 (10)
C26	0.0282 (10)	0.0364 (10)	0.0394 (10)	0.0017 (9)	-0.0005 (10)	-0.0045 (9)
C31	0.0355 (11)	0.0386 (11)	0.0577 (12)	-0.0024 (9)	-0.0058 (13)	-0.0094 (11)
C32	0.0360 (13)	0.0550 (14)	0.0368 (11)	-0.0003 (10)	0.0049 (11)	0.0074 (11)

C61	0.0304 (11)	0.0246 (9)	0.0364 (10)	0.0045 (9)	-0.0026 (9)	0.0077 (8)	
C62	0.0537 (15)	0.0387 (12)	0.0393 (11)	-0.0057 (11)	0.0080 (11)	0.0021 (10)	
C63	0.0657 (17)	0.0362 (13)	0.0493 (12)	-0.0036 (12)	-0.0009 (14)	-0.0095 (11)	
C64	0.0390 (12)	0.0308 (10)	0.0573 (14)	-0.0048 (9)	-0.0099 (13)	0.0126 (12)	
C65	0.0384 (14)	0.0485 (14)	0.0514 (13)	-0.0074 (11)	-0.0026 (11)	0.0076 (11)	
C66	0.0445 (14)	0.0455 (14)	0.0397 (11)	-0.0003 (12)	-0.0064 (11)	0.0015 (10)	
Geometric parat	meters (Å, °)						
Cl1—C24		1.7528 (19)	C62–	-C63	1.36	7 (3)	
Cl2—C64		1.7518 (19)	C63–	C63—C64		1.366 (3)	
O4—C4		1.223 (2)	C64—C65		1.375 (3)		
N1—C2		1.475 (2)	C65—C66 1.7		1.38	1 (3)	
N1—C6		1.456 (2)	C2—	С2—Н2 1.0		00	
N1—H1		0.853 (17)	C5—	C5—H5A		00	
C2—C3		1.566 (3)	C5—	C5—H5B		0.9900	
C2—C21		1.511 (2)	C6—	Н6	1.00	00	
C3—C31		1.526 (3)	C22–	-H22	0.95	00	
C3—C32		1.536 (3)	C23–	-H23	0.9500		
C3—C4		1.529 (3)	C25–	-H25	0.95	00	
C4—C5		1.484 (3)	C26–	-H26	0.95	00	
C5—C6		1.527 (3)	C31–	-H31A	0.98	00	
C6—C61		1.507 (3)	C31–	–H31B	0.98	00	
C21—C22		1.398 (3)	C31–	-H31C	0.98	00	
C21—C26		1.391 (3)	C32–	-H32A	0.98	00	
C22—C23		1.378 (3)	C32–	–H32B	0.98	00	
C23—C24		1.380 (3)	C32–	-H32C	0.98	00	
C24—C25		1.375 (3)	C62–	—Н62	0.95	00	
C25—C26		1.391 (3)	C63–	—Н63	0.95	00	
C61—C66		1.387 (3)	C65–	-H65	0.95	00	
C61—C62		1.383 (3)	C66–	-H66	0.95	00	
C2—N1—C6		113.25 (15)	N1—	C2—H2	108.	00	
C6—N1—H1		112.1 (11)	С3—	С2—Н2	108.	00	
C2—N1—H1		109.3 (11)	C21–	С2Н2	108.	00	
N1-C2-C21		109.36 (14)	C4—	С5—Н5А	109.	00	
N1—C2—C3		109.70 (14)	C4—	С5—Н5В	109.	00	
C3—C2—C21		114.21 (14)	С6—	С5—Н5А	109.	00	
C2—C3—C31		110.20 (14)	С6—	С5—Н5В	109.	00	
C2—C3—C4		106.98 (14)	H5A-	—С5—Н5В	108.	00	
C4—C3—C32		107.37 (15)	N1—	С6—Н6	109.	00	
C31—C3—C32		109.73 (16)	С5—	С6—Н6	109.	00	
C4—C3—C31		110.87 (15)	C61–	-С6—Н6	109.	00	
C2—C3—C32		111.63 (15)	C21–	-С22—Н22	120.	00	
O4—C4—C5		121.87 (18)	C23–	-С22—Н22	120.	00	
O4—C4—C3		120.61 (17)	C22–	-С23—Н23	120.	00	
C3—C4—C5		117.52 (16)	C24–	-С23—Н23	120.	00	
C4—C5—C6		111.36 (16)	C24–	-С25—Н25	121.	00	
N1—C6—C5		107.50 (15)	C26–	-С25—Н25	121.	00	
C5—C6—C61		114.09 (16)	C21–	-С26—Н26	119.	00	

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
Hydrogen-bond geometry (Å, °)				
^ 0				
	1/4.20 (10)	004-003-000-001		-0.3 (3)
$C_{4} = C_{5} = C_{6} = C_{61}$	55.7 (2) 174 28 (16)	C03 - C04 - C03 - C00		-0.5(3)
$C_{4} = C_{5} = C_{6} = 0$	50.1(2)	$C_{12} = C_{04} = C_{03} = C_{00}$		1/0.03(1/)
$C_{4} = C_{4} = C_{5} = C_{6}$	-50.1(2)	C_{02} C_{03} C_{04} C_{05} C_{04}		-178.65.(17)
C_{32} C_{3} C_{4} C_{5} C_{6}	-72.5(2)	C_{02} C_{03} C_{04} C_{12} C_{12} C_{12} C_{12} C_{13} C_{14} C_{15}		1/9.29(1/)
$C_{32} = C_{3} = C_{4} = C_{4}$	107.97 (19)	C62 - C62 - C63 - C64		-0.8(3)
$C_{31} = C_{3} = C_{4} = C_{5}$	107.07 (10)	C_{62} — C_{61} — C_{66} — C_{65}		-0.2(3)
$C_{31} = C_{3} = C_{4} = C_{4}^{2}$	-11.9(2)			1/0.//(19)
$C_2 - C_3 - C_4 - C_5$	4/./(2)	C6 - C61 - C62 - C63		0.9 (3) 176 77 (10)
$U_2 - U_3 - U_4 - U_4$	-132.0/(17)	C6-C61-C62-C63		-1/6.1(2)
$C_{3} = C_{2} = C_{4} = C_{4}$	-95.5 (2)	C_{24} C_{25} C_{26} C_{21}		0.4(3)
$C_{3} = C_{2} = C_{21} = C_{22}$	87.3 (2)	C_{23} — C_{24} — C_{25} — C_{26}		-0.1(3)
N1 - C2 - C21 - C26	141.12 (18)	CII—C24—C25—C26		1/9.33 (15)
N1 - C2 - C21 - C22	-36.1 (2)	C22—C23—C24—C25		0.1 (3)
C_{21} C_{2} C_{3} C_{32}	-57.7(2)	C22—C23—C24—Cl1		-179.30(14)
C_{21} C_{2} C_{3} C_{31}	64.5 (2)	C21—C22—C23—C24		-0.5 (3)
C_{21} C_{2} C_{3} C_{4}	-174.92 (14)	C22—C21—C26—C25		-0.8 (3)
N1—C2—C3—C32	65.44 (19)	C2—C21—C26—C25		-178.05 (17)
NI-C2-C3-C31	-172.37(15)	C26—C21—C22—C23		0.8 (3)
NI-C2-C3-C4	-51.75 (18)	C2—C21—C22—C23		178.11 (17)
C2—N1—C6—C61	172.13 (15)	C5—C6—C61—C66		131.6 (2)
C2 - N1 - C6 - C5	-64.02 (19)	C5—C6—C61—C62		-51.5 (2)
$C_{0} = N_{1} = C_{2} = C_{2}$	-169.16 (15)	NI-C6-C61-C66		-108.6(2)
C6 = N1 = C2 = C3	04.80 (19)	N1 - C6 - C61 - C62		08.3(2)
	(4.9) (10)			(9.2)(2)
C61 - C66 - C65	121 31 (18)	C65—C66—H66		119.00
C64—C65—C66	118 7 (2)	C61—C66—H66		119.00
C_{63} C_{64} C_{65}	121 28 (19)	C66—C65—H65		121.00
Cl_{2} = C61 = C63	119.38 (17)	C64—C65—H65		121.00
Cl2—C64—C65	119.33 (17)	С64—С63—Н63		120.00
C62—C63—C64	119.2 (2)	С62—С63—Н63		120.00
C61—C62—C63	121.81 (19)	С63—С62—Н62		119.00
C6—C61—C66	120.76 (16)	С61—С62—Н62		119.00
C6—C61—C62	121.51 (17)	H32B—C32—H32C		109.00
C62—C61—C66	117.66 (18)	H32A—C32—H32C		109.00
C21—C26—C25	121.22 (17)	H32A—C32—H32B		109.00
C24—C25—C26	118.54 (17)	C3—C32—H32C		109.00
Cl1—C24—C23	118.88 (14)	C3—C32—H32B		109.00
Cl1—C24—C25	119.47 (14)	C3—C32—H32A		109.00
C23—C24—C25	121.64 (17)	H31B—C31—H31C		109.00
C22—C23—C24	119.48 (17)	H31A—C31—H31C		109.00
C21—C22—C23	120.61 (17)	H31A—C31—H31B		109.00
C22—C21—C26	118.50 (17)	C3—C31—H31C		109.00
C2—C21—C22	120.15 (16)	C3—C31—H31B		109.00
C2—C21—C26	121.30 (16)	C3—C31—H31A		109.00
N1—C6—C61	108.52 (15)	C25—C26—H26		119.00

N1—H1····O4 ⁱ	0.853 (17)	2.312 (17)	3.092 (2)	152.3 (15)
C23—H23…O4 ⁱⁱ	0.95	2.56	3.377 (2)	144
C31—H31B···Cg1 ⁱⁱⁱ	0.98	2.96	3.7265 (15)	136

Symmetry codes: (i) *x*-1/2, -*y*+1/2, *z*; (ii) *x*-1/2, -*y*+1/2, *z*-1; (iii) *x*+1/2, -*y*+1/2, *z*.

